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ABSTRACT: We aggregated invertebrate data from various sources to assemble data for modeling in two ecore-
gions in Oregon and one in California. Our goal was to compare the performance of models developed using mul-
tiple linear regression (MLR) techniques with models developed using three relatively new techniques:
classification and regression trees (CART), random forest (RF), and boosted regression trees (BRT). We used tol-
erance of taxa based on richness (RICHTOL) and ratio of observed to expected taxa (O ⁄ E) as response variables
and land use ⁄ land cover as explanatory variables. Responses were generally linear; therefore, there was little
improvement to the MLR models when compared to models using CART and RF. In general, the four modeling
techniques (MLR, CART, RF, and BRT) consistently selected the same primary explanatory variables for each
region. However, results from the BRT models showed significant improvement over the MLR models for each
region; increases in R2 from 0.09 to 0.20. The O ⁄ E metric that was derived from models specifically calibrated
for Oregon consistently had lower R2 values than RICHTOL for the two regions tested. Modeled O ⁄ E R2 values
were between 0.06 and 0.10 lower for each of the four modeling methods applied in the Willamette Valley and
were between 0.19 and 0.36 points lower for the Blue Mountains. As a result, BRT models may indeed represent
a good alternative to MLR for modeling species distribution relative to environmental variables.
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INTRODUCTION

Modeling has increased markedly in the past dec-
ade in all areas of ecology, and major advances have

been made in conceptual models and statistical tech-
niques (Leathwick et al., 2005; Austin, 2007; Cabecin-
ha et al., 2007; Turak et al., 2011), which, in turn,
help practitioners derive response models that better
support the needs of bioassessment programs. A
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fundamental goal of bioassessment in stream ecology
is a better understanding of the effects of human land
use on stream biota and the processes at various
scales that cause these effects. However, streams are
complex spatial and temporal habitat mosaics that
are directly and indirectly influenced by a combina-
tion of natural geology, climate, and human distur-
bance (Stanford et al., 2005). Stream ecologists are
trying to understand the spatial scales and processes
associated with human and natural disturbances that
are affecting the biota. Models provide a useful
framework for testing hypotheses, determining poten-
tial direct and indirect linkages, and directing where
further research is needed. The expansion and appli-
cation of multivariate models in stream ecology are
helping to address these issues and hopefully will
lead to a broader understanding of ecological and
anthropogenic pathways and responses (Oberdorff
et al., 2001; Cabecinha et al., 2007; Turak et al.,
2011; Waite et al., 2010).

Much of the research documenting the effects of
land-use change on stream biota indicates that as
the total watershed area in agricultural and ⁄ or
urban land use increases, individual biological met-
rics and multimetric indices (MMIs) (such as an
Index of Biotic Integrity, IBI) that reflect composi-
tional changes in sensitive species generally
decrease (Paul and Meyer, 2001; Allan, 2004; Van
Sickle et al., 2004; Cuffney et al., 2005; Ode et al.,
2008; Waite et al., 2010). Though some researchers
have found a threshold response (i.e., a nonlinear or
step function) of individual or multimetric biological
indices to land-use indicators (e.g., Davis and Simon,
1995; Wang et al., 2001; Walsh et al., 2005; Hilder-
brand et al., 2010; King and Baker, 2010) much of
the literature indicates that the response more often
is a simple monotonic response with no initial resis-
tance (Booth, 2005; Cuffney et al., 2005, 2010; Ken-
nen et al., 2005; Morgan and Cushman, 2005; Roy
et al., 2005; Stanford et al., 2005; Waite et al., 2008,
2010). The debate about possible threshold responses
continues not only because of the interest in deter-
mining, from a management perspective, where a
threshold might occur along a land-use gradient, but
also because of the effect thresholds and the resul-
tant nonlinear responses have on the application of
various modeling techniques. If biological responses
to landscape measures are indeed complex and non-
linear, then newer modeling techniques such as clas-
sification regression trees (CART), random forest
(RF) and boosted regression trees (BRT), multilevel
hierarchical modeling, structural equation models, or
artificial neural networks may be necessary to model
these responses (Grace, 2006). However, if various
biological responses to human disturbance are com-
monly simple and linear, then they should be more

easily modeled via standard regression techniques,
which are typically easier to develop and interpret.

There are three commonly used bioassessment var-
iable types including individual biological metrics
(e.g., Ephemeroptera, Plecoptera, and Trichoptera
richness or EPT), combining individual metrics into a
multimetric index (e.g., IBI) and development of the
observed ⁄ expected ratio metric (O ⁄ E). Each method
has its advantages and disadvantages, yet sometimes
they can give different results in differ environmental
settings (Herbst and Silldorff, 2006; Chessman et al.,
2010; Hawkins et al., 2010). It is possible that indi-
vidual metrics may be more stressor gradient specific
and multimetric indices better at more general dis-
turbance gradients, however, detailed comparison of
these three methods is beyond the scope of this
paper. We focus on two common individual biological
metrics, the general tolerance of invertebrates to a
multitude of stressors including sediment, tempera-
ture, dissolved oxygen, hydrological and habitat
changes, nutrients, and contaminants following Bar-
bour et al. (1999) and the ratio of the observed ⁄
expected taxa based on the RIVSPAC method (River
Invertebrate Prediction and Classification System)
(Clarke, 2000; Moss, 2000). The number of tolerant
taxa is expected to increase while the O ⁄ E value is
expected to decrease as the amount of disturbance to
the stream increases.

Using the same dataset used in this paper, Waite
et al. (2010) developed macroinvertebrate response
models for three regions in the western United States
(U.S.) and the best multiple linear regression (MLR)
models based on Akaike Information Criterion (AIC)
and R2 from each individual region required only two
or three explanatory variables to model macroinverte-
brate metrics to explain 41-74% of the variation. In
each region, their best model contained some mea-
sure of urban and ⁄ or agricultural land use, yet often
the model was improved by including a natural
explanatory variable such as mean annual precipita-
tion or mean watershed slope (for the MLR equations,
see Waite et al., 2010). Two macroinvertebrate met-
rics, the richness of tolerant macroinvertebrates
(RICHTOL) and some form of EPT richness, were
common response variables in models developed
among the three regions (Waite et al., 2010). Models
were developed for the same two invertebrate metrics
even though the geographic regions they modeled
reflect distinct differences in precipitation, geology,
elevation, slope, population density, and land use. L.
R. Brown, J. T. May, A. C. Rehn, P. R. Ode, I. R.
Waite, and J. K. Kennen (personal communication)
were also able to develop strong models using linear
modeling techniques (MLR), they modeled an inverte-
brate index of biotic integrity (BIBI) across a gradient
of urbanized streams in southern California and were
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able to explain approximately 48% of the variation
based on MLR models including classification accu-
racy of 69 and 87% for impaired and unimpaired
sites, respectively.

One important question that researchers are work-
ing to answer is whether the use of newer, more
complex modeling techniques such as CART and
regression trees improves our ability to predict biolog-
ical metrics and potentially provide new insights into
response patterns and mechanistic pathways. Gener-
alized linear models (GLMs) and generalized additive
models (GAMs) were introduced in the 1980s and
1990s as improved methods over MLR for data with
non-normally distributed errors (e.g., presence–
absence and count data) or nonlinear relations and
usually outperform single regression trees (Elith
et al., 2008). Regression trees are one type of tech-
nique within the commonly used CART or decision
tree family (e.g., Breiman et al., 1984; De’ath and
Fabricius, 2000; Prasad et al., 2006). Trees attempt to
explain variation in one categorical (classification) or
continuous (regression) response variable by one or
more explanatory variables, the resultant output
being a dendogram or tree with varying numbers of
branches or nodes. These techniques have a few prop-
erties that are highly desirable for ecological data
analysis: (1) they can handle numeric, categorical,
and censored response variables, (2) they are not
affected by explanatory variables that follow non-
normal distributions (i.e., skewed, Poisson, or bi-
modal), and (3) they can model complex interactions
simply (De’ath, 2007). Maloney et al. (2009) found
that CART models of watershed disturbance on BIBI
values provided results that were intuitive and easy
to interpret but they did not classify sites any better
than logistic regression models; however, RF models
showed minor improvements in performance over the
other models. De’ath (2007) and Elith et al. (2008)
show that BRTs outperform GLMs and GAMs in vari-
able selection, predictive ability (higher R2 and lower
error), and can handle sharp discontinuities in data
that are difficult for the other methods. Aertsena
et al. (2010) also showed that BRT outperformed most
modeling techniques (i.e., MLR, GLM, GAM, and
CART), with the exception of artificial neural net-
works.

Over the past decade the estimate of O ⁄ E has
become a common measure of biological condition for
use in bioassessments (e.g., Hawkins, 2006; Carlisle
et al., 2008). The expected taxa for a site are com-
monly estimated by models (e.g., RIVPACS) (Clarke,
2000; Moss, 2000) of reference sites; this value is
then compared to the actual taxa collected at a site.
Models based on this approach have been developed
in many international regions (e.g., Europe, New Zea-
land, and Australia) (Davies, 2000; Clarke and

Murphy, 2006) and for separate regions within the
U.S., including many states (Hubler, 2008). Recently,
Hawkins et al. (2010) compared the response of three
types of O ⁄ E models with five versions of MMIs for
macroinvertebrates and found that in general, the
O ⁄ E models were better able to distinguish managed
or disturbed sites from reference sites than the
MMIs. Due to these results and to its overall national
and international popularity, we wanted to evaluate
how models developed using O ⁄ E as the response var-
iable would compare to models developed using single
metrics, such as RICHTOL.

Our goal in this paper is to compare the overall
performance (i.e., model fit, or R2) of models devel-
oped using standard MLR techniques with more com-
plex models developed using newer alternative
techniques such as CART, RF, and boosted regression
for the common macroinvertebrate metrics RICHTOL
and O ⁄ E as the response variables. Also, we believe
that the development of watershed disturbance pre-
dictive models such as those presented herein will
build upon previous research to help the potential
derivation of more complex models to better under-
stand disturbance pathways in the landscape and
ultimately the biocomplexity of aquatic systems.

METHODS

Data Aggregation and Landscape Analysis

For this comparative analysis we used the datasets
(U.S. Geological Survey, U.S. Environmental Protec-
tion Agency, Oregon Department of Environmental
Quality, and California Department of Fish and
Game) previously aggregated for three regions in the
western U.S. by Waite et al. (2010). A brief summary
of the methods follows. Sites were evaluated based on
the following criteria: invertebrate data sampled with
comparable methods; upstream watershed area of
between 13 and 259 km2; and watersheds could not
be nested (i.e., no spatial autocorrelation). Sites meet-
ing these conservative criteria resulted in three study
regions: Coastal Southern California (n = 55), the
Blue Mountains ecoregion of eastern Oregon
(n = 148), and the Willamette Valley ecoregion in
north-central Oregon (n = 96) (Figure 1).

For consistency, watersheds were re-delineated for
the selected sampling sites within the three study
regions using USGS 7.5 min quadrangle digital raster
graphics as base layers. The digital raster graphics
were displayed on-screen along with National
Hydrography Dataset (NHD) high resolution stream
lines for each region (U.S. Geological Survey, 2007).
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Watershed boundaries were digitized on-screen at a
scale of 1:10,000 or larger. Adjacent watershed poly-
gons were edge matched to eliminate all overlaps and
gaps. All work was conducted using ArcGIS, ArcMap
9.2 (Environmental Systems Research Institute, Red-
lands, CA; Table A1) GIS software.

Riparian buffer zone polygons were created within
each watershed, extending 2 km upstream from the
outlet of each watershed along the main stem and all
tributaries and 90 m on either side of the stream cen-
terlines. The buffers were created by selecting the
appropriate NHD stream lines within each watershed
and creating routes along each main stem and tribu-
tary flow path. The routes were then clipped to a

distance of 2 km from the basin outlet and buffered.
All abbreviations for riparian based explanatory vari-
ables begin with the letters ‘‘Rip’’; otherwise, vari-
ables are watershed based (Table 1).

Spatial datasets representing landscape metrics of
watershed disturbance were created for each
watershed and riparian zone buffer from available
national and regional datasets (Table A1) and
included elevation, slope, land cover (1992 and 2001),
population density, road networks, soil infiltration
capacity, hydrography, pollution point sources,
dams, and precipitation. Land-use summaries were
based on either 1992 or 2001 spatial data (as
described in Vogelmann et al., 2001; Homer et al.,

FIGURE 1. Map Showing Land Use and Land Cover for the Three Modeling Regions:
Blue Mountains and Willamette Valley, Oregon, and Southern California.
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2004), depending on which data source was closer to
the macroinvertebrate sample date for that
watershed. Watersheds and riparian zone buffers
were used to define zones for analysis and calculate
summary statistics. The 1992 and 2001 land cover
datasets used slightly different classification schemes.
Uniform codes based on the 2001 classification
scheme were assigned to all land cover classes in
the final summary statistics table (Fry et al., 2009).
We did not assess the distribution pattern of land
use ⁄ land cover within the watershed though this can
be important in some situations.

Description of Modeling Regions

The Coastal Southern California (SoCal; Southern
and Central California Chaparral and Oak Wood-
lands Ecoregion) region has a Mediterranean climate

of hot, dry summers and cool, moist winters (Ode
et al., 2005). Average precipitation at each site ranges
from 25 to 50 cm ⁄ year. The geology of the ecoregion
is dominated by recently uplifted and poorly consoli-
dated marine sediments. Vegetative cover in this
region consists mainly of chaparral and oak wood-
lands, though grasslands occur in some lower eleva-
tions and patches of pine are found at higher
elevations (open low mountains or foothills). The
landscape is currently dominated by urban develop-
ment; the human population is approximately 19 mil-
lion and is projected to exceed 28 million by 2025
(Ode et al., 2005). Outside the urban centers, much of
this region was historically grazed by domestic live-
stock or cultivated for fruits and vegetables, but most
of this land has since been converted to urban uses.

The Blue Mountains (Blue_Mt) are the western-
most range of the Middle Rocky Mountains and, like
the Cascade Range, are largely volcanic, with fertile

TABLE 1. Description, Variable Code and Definition of Explanatory (landscape) and Predictor (invertebrate metrics) Variables
Used for Response Model Development.

Explanatory Variables: Landscape

Description Variable Code Definition

Watershed Scale Variables
Percent urban land use Urban Percent watershed area in urban land use (NLCD 2000 categories 21, 22, 23,

and 24)
Percent agricultural land use Ag Percent watershed area in agricultural land use (NLCD 2000 category 82)
Sum of percent Ag + Urban Ag + Urb Sum of percent watershed area in urban (NLCD 2000 categories 21, 22, 23,

and 24) and agricultural (NLCD 82) land use
Percent forest Forest Percent watershed area in forest land use (NLCD 2000 categories 41, 42, 43)
Percent pasture Pasture Percent watershed area in pasture land use (NLCD 2000 category 81)
Percent shrub ⁄ scrub Shrub Percent watershed area in shrubland, shrub ⁄ scrub (NLCD 2000 category 52)
Road density RdDens Road density in watershed = Road length (km) ⁄ watershed area (km2)
Mean population density PopDen Watershed mean population density based on 2000 census (persons ⁄ km2)
Minimum elevation Min-Elev Elevation (m) at stream site, pour point of watershed
Mean slope percent Slope Mean percent watershed slope
Manmade stream density MmStreams Manmade stream density in watershed = manmade stream length (km) ⁄

watershed area (km2)
Mean annual precipitation MnAnnPrecip Mean annual precipitation (cm)
Soil infiltration rate Soil_Mod-Infil Hydrologic soil group B, moderate infiltration rate (min. infiltration rate

4-8 mm ⁄ h)
Riparian Scale Variables
Percent urban land use Rip_Urban Percent buffer area in urban land use (NLCD 2000 categories 21, 22, 23,

and 24)
Percent agricultural land use Rip_Ag Percent buffer area in agricultural land use (NLCD 2000 category 82)
Sum of percent Ag + Urban Rip_Ag + Urb Sum of percent buffer area in urban (NLCD 2000 categories 21, 22, 23, and 24)

and agricultural (NLCD 82) land use
Percent forest Rip_Forest Percent buffer area in forest land use (NLCD 2000 categories 41, 42, 43)
Percent pasture Rip_Pasture Percent buffer area in pasture land use (NLCD 2000 category 81)
Percent shrub ⁄ scrub Rip_Shrub Percent buffer area in shrubland, shrub ⁄ scrub (NLCD 2000 category 52)
Road density Rip_RdDens Road density in buffer = Road length (km) ⁄ watershed area (km2)
Mean population density Rip_PopDens Buffer area mean population density based on 2000 census (persons ⁄ km2)
Mean slope percent Rip_Slope Mean percent buffer slope
Maximum elevation Rip_Max-Elev Maximum buffer elevation (m)
Response Variables: Invertebrate Metrics
Observed ⁄ expected O ⁄ E Ratio of number of observed taxa at a site over the expected taxa based on

modeled reference sites
Tolerant richness RICHTOL Average USEPA tolerance values for sample based on richness
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plateaus and deeply fissured river valleys. Carved by
two rivers (the John Day and Grande Ronde Rivers)
the landscape has steep hillsides, bluffs and rimrock
faces. Temperature and precipitation are highly cor-
related with elevation. Precipitation ranges from 22
to 45 cm ⁄ year along the river valleys and is
>150 cm ⁄ year in the nearby mountains. This region
is dominated by coniferous forests in mid to higher
elevations and shrub and grassland in lower eleva-
tions, though much of the latter has been displaced
by agriculture and grazing. The region has no large
cities and urbanization is limited to scattered smaller
cities and small towns.

The Willamette Valley (Will_V) ecoregion contains
a mixture of rolling prairies, mixed forests, and
extensive lowland valley wetlands. With temperate,
dry summers and cool, wet winters, the Willamette
River basin and surrounding area is characteristic of
the Pacific Northwest climate. About 90% of the
annual precipitation (100-130 cm ⁄ year) occurs during
October through May (Uhrich and Wentz, 1999), fall-
ing as rain in the valley and snow in the mountains.
The land use ⁄ land cover in the valley plains and foot-
hills is primarily cultivated crops, pasture, and grass-
lands. Urbanization ranges from minimal to
extensive (Waite et al., 2008). Centered on the conflu-
ence of the Columbia and Willamette Rivers, Port-
land is the most populous city in Oregon, with
539,000 people in city limits and nearly 3 million peo-
ple in the Portland metropolitan area (U.S. Census
Bureau, 2000). The population in the metropolitan
area increased almost 30% from 1990 to 2000, with
some suburban populations increasing more than
80% during the same period (U.S. Census Bureau,
2000). The drainage network in the Willamette Valley
combines natural tributaries, complex networks of
canals in agricultural areas, and stormwater canals
and groundwater infiltration wells in cities.

The three geographic regions modeled in this study
have differing natural settings and the extent and
type of human disturbance in each respective region.
SoCal has the driest climate, intermediate mean
stream site elevation (Min-Elev) and percent agricul-
ture, and the highest population density. Blue_Mt
has the highest mean site elevation and mean
watershed slope, intermediate mean precipitation,
and the lowest population density, percent urban,
and percent agriculture. Will_V has the greatest
precipitation, lowest minimum site elevation, and the
highest percent agriculture.

Macroinvertebrate Data

Macroinvertebrate data from 1994 to 2005 assem-
bled for this study were considered to be comparable

in terms of sampling protocols (sampled habitat,
number of composite samples, and total sampled
area) and laboratory procedures, including sorting,
subsample count level, and taxonomic resolution (per-
sonal communication state agency personnel, 2005;
Waite et al., 2010). In general, all macroinvertebrate
samples were collected in similar habitats using kick-
net techniques from five to eight separate areas and
combined for a composite sample (Moulton et al.,
2002; Peck et al., 2006; Hubler, 2008). Extensive
review of the data was completed to make sure aggre-
gated data from disparate sources included the same
taxonomic groups, followed the same nomenclature,
and had appropriate taxonomic resolution before data
analysis was attempted. The Invertebrate Data Anal-
ysis System software (Cuffney, 2003) was used to
resolve by region all taxonomic issues (taxonomic
identification level and nomenclature), to remove
ambiguous taxa (Cuffney et al., 2007), and to ran-
domly subsample raw counts to an equal 300 (Will_V)
or 500 specimen count (the highest possible based on
the data in each region) across all study regions. In
general, data for dominant aquatic insect orders were
resolved at genus level. Less common orders were
often aggregated to family level. Rare organisms or
those with difficult taxonomy were sometimes aggre-
gated to order or higher. The dipteran family Chiro-
nomidae is considered an important bioindicator
group, yet historically a difficult group to identify to
genus or species. As a result, data for this group were
assigned to six taxa levels (five subfamilies plus Chi-
ronomidae) from the various family to genus level
identifications within the original data. Tolerance
and functional group metrics were calculated using
values from Barbour et al. (1999), supplemented with
values from Wisseman’s tolerances for the Pacific
Northwest (Wisseman, 1996, unpublished data).
Macroinvertebrate O ⁄ E values were estimated using
two existing regional models (East and West of the
Cascade Mountains) that were developed by Oregon
Department of Environmental Quality (Hubler,
2008). O ⁄ E models were not ready for the SoCal
region at the time of analysis so we were not able to
test O ⁄ E values for this area.

MODEL DEVELOPMENT

Details of MLR model development procedures are
outlined in Waite et al. (2010). In brief, model perfor-
mance was assessed using a variety of statistics,
including adjusted mean sum of squares (R2), root
mean squared error, AIC, predicted sum of squares,
and regression coefficients in Waite et al. (2010). We
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adopted a model fitting approach for each response
variable. We used a step-wise selection based on AIC
for all models ranging from 1 to 5 environmental
variables, as appropriate by region. If necessary, vari-
ables were transformed to improve their distributions
to better adhere to assumptions of linearity. Models
were developed for each geographic region separately
due to the large spatial separation between each
region and as described above, because the climatic
and disturbance regimes were distinct. Model residu-
als, potential outliers, and interaction terms were
evaluated. A description of variables used in model
development is provided in Table 1. A MLR model
was developed for the response variable RICHTOL
for all three regions; it included two predictor vari-
ables (population density and riparian road density)
for SoCal, three predictor variables for Blue_Mt (per-
cent shrubs, percent agriculture, and mean annual
precipitation in the watershed) and three predictor
variables for the Will_V region (percent agriculture
plus urban land use in the watershed, mean annual
precipitation, and percent agriculture plus urban
land use in the riparian zone) (Waite et al., 2010). As
a comparison to the MLR models developed by Waite
et al. (2010) for RICHTOL, new models were devel-
oped for O ⁄ E for the Blue_Mt and Will_V regions.

To gain additional insight into these data and as
a comparison against the MLR models, single
regression trees, RF, and BRT models were devel-
oped for each region individually. Regression trees
are one type of technique within the commonly used
CART or decision tree family, and their use and
technical details have been described extensively in
the literature (e.g., Breiman et al., 1984; De’ath and
Fabricius, 2000; Prasad et al., 2006); therefore, we
will only provide a brief overview. Trees attempt to
explain variation in one categorical (classification) or
continuous (regression) response variable by one or
more explanatory variables, the resultant output
being a dendogram, or tree, with varying numbers
of branches or nodes. Trees are developed following
a hierarchical binary splitting procedure that
attempts to find the best single explanatory variable
that minimizes the within group and maximizes the
among group dissimilarity in the response variable
at each split. It does this for each explanatory vari-
able entered into model development and can thus
provide a list of the explanatory or predictive power
of the variables. We used R statistics scripts and
software (R Development Core Team, 2007, version
2.10.0) following the procedures outlined by Ther-
neau and Atkinson (1997) to determine the proper
single regression tree and the appropriate pruning
of branches (De’ath and Fabricius, 2000; Prasad
et al., 2006). Trees have a few properties that are
highly desirable for ecological data analysis: (1) they

can handle numeric and categorical variables (2)
they are not affected by explanatory variables that
follow non-normal distributions (i.e., skewed, Pois-
son, or bi-modal), and (3) they can model complex
interactions simply (De’ath, 2007).

Random forests and BRT are among a family of
techniques used to advance single classification or
regression trees by averaging the results for each
binary split from numerous trees or forests thus
reducing the predictive error and improving overall
performance (De’ath, 2007; Elith et al., 2008). In
BRT, after the initial tree has been generated, suc-
cessive trees are grown on reweighted versions of
the data giving more weight to those cases that are
incorrectly classified than those that are correctly
classified within each growth sequence. Thus, as
more and more trees are grown in BRT, the large
number of trees increases the chance that cases that
are difficult to classify initially are correctly classi-
fied, thus representing an improvement to the basic
averaging algorithm used in RF (De’ath, 2007).
Boosted trees and RF models retain the positive
aspects of single trees seen in CART models, yet
have improved predictive performance, nonlinearities
and interactions are catered to or easily assessed,
and they can provide an ordered list of the impor-
tance of the explanatory variables (Cutler et al.,
2007; De’ath, 2007). Though RF and BRT offers
improved modeling performance over CART, the
simple single tree obtained from CART is lost, mak-
ing it more difficult to visualize the results. Partial
dependency plots (PDP) are a way to visualize the
effect of a specific explanatory variable on the
response variable after accounting for the average
effects of all other explanatory variables (De’ath,
2007; Elith et al., 2008); these are presented in this
paper for select models as examples (e.g., Figures 2
and 3). Random forest models were developed using
the rpart library in R following methods outlined in
Cutler et al. (2007) and BRT models were run using
the gbm library in R and specific code from Elith et al.
(2008). We used R2 values for assessing the amount of
variation explained among the four modeling tech-
niques since it is a common and well understood mea-
sure that allowed us to put each model on the same
measurement currency; other model performance
measures such as confidence intervals and p-values
are not included for simplicity.

RESULTS

In general, the four modeling techniques selected
the same primary explanatory variables within each
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region with minor variation among model types
(Table 2): (1) SoCal: population density, minimum
elevation, and riparian slope, (2) Blue_Mt: percent
shrub, mean annual precipitation (MnAnnPrecip),
and watershed slope, and (3) Will_V: percent agri-
culture plus urban, MnAnnPrecip, riparian maxi-
mum elevation, and percent riparian forest (see
Table 1 for definitions). Generally, the RICHTOL R2

values for MLR were slightly higher than those for
the CART and RF models for all three regions
(Table 3); however, this was not the case for the

O ⁄ E models for Blue_Mt. Nevertheless, these differ-
ences are probably not meaningful because the R2

values for CART and RF models are determined by
a cross-validation method that ensures no over-fit-
ting and thus usually gives a lower, more conserva-
tive value than the MLR values. Interaction affects
were tested for and found to not be significant in
the models developed. Conversely, the BRT models
showed considerable improvement in the R2 values
over all the other models for both response variables
(i.e., RICHTOL and O ⁄ E). For example, the SoCal
RICHTOL R2 values for the MLR compared to the
BRT model increased from 0.67 to 0.79, Blue_Mt
showed an increase from 0.44 to 0.59 for RICHTOL
and from 0.08 to 0.28 for O ⁄ E, and the Will_V R2

values increased from 0.74 to 0.83 for RICHTOL
and from 0.64 to 0.75 for O ⁄ E (Table 3).

The O ⁄ E metric derived from RIVPACS type mod-
els specifically calibrated for Oregon consistently had
lower R2 values than RICHTOL for the two regions
tested (Table 3). Modeled O ⁄ E R2 values were
between 0.06 and 0.10 lower than RICHTOL values
for each of the four modeling methods applied in the
Will_V region and were between 0.19 and 0.36 points
lower for the Blue_Mt region.

As mentioned above, all modeling procedures (i.e.,
MLR, CART, RF, and BRT) generally retained
the same subset of explanatory variables. These vari-
ables, with some minor exceptions in the Blue_Mt
study region, generally accounted for approximately
a similar proportion of the variance in the

TABLE 2. Explanatory Variables in Order of Importance in the Models for Four Modeling Methods for Two Macroinvertebrate Metrics for
Each of Three Study Regions (SoCal, Southern California; Will_V, Willamette Valley; Blue_Mt, Blue Mountains, Oregon).

MLR CART RF BRT

SoCal
RICHTOL PopDen PopDen PopDen PopDen

Rip_RdDens MmStreams Min-Elev Rip_Slope
Min-Elev Rip_Slope Min-Elev

Will_V
RICHTOL Ag + Urb Ag + Urb Ag + Urb Ag + Urb

MnAnnPrecip MnAnnPrecip MnAnnPrecip MnAnnPrecip
Rip_Ag + Urb Rip_Forest Rip_Forest Rip_Max-Elev

Rip_Max-Elev Rip_Forest
O ⁄ E Ag + Urb Forest Forest Ag + Urb

MnAnnPrecip Rip_Max-Elev Rip_Max-Elev Rip_Max-Elev
Rip_Ag + Urb Soil_Mod-Infil MnAnnPrecip

Rip_Forest
Blue_Mt

RICHTOL Shrub Shrub Shrub Shrub
Ag Slope Slope MnAnnPrecip
MnAnnPrecip MnAnnPrecip MnAnnPrecip Slope

O ⁄ E MnAnnPrecip Slope Shrub Slope
Shrub MnAnnPrecip Slope MnAnnPrecip
Slope MnAnnPrecip Shrub

Notes: MLR, multiple linear regression; CART, classification and regression trees; RF, random forest; BRT, boosted regression trees; RICH-
TOL, average tolerance value for sample based on richness at a site; O ⁄ E, ratio of observed ⁄ expected taxa.

TABLE 3. Comparison of R2 Values for Four Modeling Methods for
Two Macroinvertebrate Metrics for Each of Three Study Regions
(SoCal, Southern California; Will_V, Willamette Valley; Blue_Mt,

Blue Mountains, Oregon).

MLR CART RF BRT

SoCal
RICHTOL 0.67 (2) 0.64 (3) 0.65 (3) 0.79 (3)

Will_V
RICHTOL 0.74 (3) 0.68 (3) 0.73 (4) 0.83 (4)
O ⁄ E 0.64 (3) 0.62 (2) 0.61 (4) 0.75 (3)

Blue_Mt
RICHTOL 0.44 (3) 0.34 (3) 0.41 (3) 0.59 (3)
O ⁄ E 0.08 (3) 0.15 (2) 0.07 (3) 0.28 (3)

Notes: Number of variables in model in parentheses. MLR, multi-
ple linear regression; CART, classification and regression trees; RF,
random forest; BRT, boosted regression trees; RICHTOL, average
tolerance value for sample based on richness at a site; O ⁄ E, ratio of
observed ⁄ expected taxa. Highest R2 value across all models is
shown in bold.
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RICHTOL and O ⁄ E response models. R2 values,
however, do not provide a complete picture of the
model response pattern, and the overall influence of
a specific explanatory variable on the environmental
system or process being modeled is typically lost
when the model is fit to a linear or nonlinear form.
Partial dependency plots, which are provided as a
diagnostic tool in the BRT and RF model output,
provide a way to more fully examine the relative
influence of individual explanatory variables on the
response variable given the modeled structure. As
explained in De’ath (2007) and Elith et al. (2008),
PDP provide a way to visualize the effect of a spe-
cific explanatory variable on the response variable
after accounting for the average effects of all other
explanatory variables. For example, PDPs for the
four variables retained in the BRT model for Will_V
are shown in Figure 2. In general, the plots show a
near linear increase in RICHTOL as the amount of
agriculture plus urban land use in the watershed
increases (Figure 2A) and a decrease in RICHTOL
as riparian maximum elevation increases (Fig-
ure 2D). However, the response in RICHTOL values
flattens out at approximately 60% agriculture plus
urban land use, then again increases rapidly from
approximately 90 to 100%. Likewise, the PDP graph
shows that there is rapid change in RICHTOL

values from near 0 to 200 m in riparian maximum
elevation followed by no response beyond 400 m.
The pattern shown for mean annual precipitation
(Figure 2B) follows the opposite pattern of the
amount of agriculture plus urban land use in the
watershed, RICHTOL values decrease rapidly from
the lowest precipitation values until approximately
80 cm ⁄ year beyond which values show no response.
As the amount of riparian forest cover declines (Fig-
ure 2C), RICHTOL values increase little until ripar-
ian forest values drop to about 30%, where there is
a step-wise increase until the point when there is
only about 5% riparian forest remaining, whereupon
there is a rapid increase in tolerance values. The
PDPs for O ⁄ E in the Will_V show remarkable simi-
larity to that described above for RICHTOL except
that, as one would expect due to the differences in
the invertebrate metrics, the curves respond in
opposite directions (Figure 3). There is a general
linear decrease in O ⁄ E values as agriculture plus
urban land use increases (Figure 3A), a sharp
increase in O ⁄ E values as riparian maximum eleva-
tion increases to 200 m (Figure 3B) or when mean
annual precipitation increases to about 70 cm ⁄ year
(Figure 3C). As seen for RICHTOL, O ⁄ E showed an
abrupt threshold-type response at low levels of
riparian forest (Figure 3D) followed by a step
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FIGURE 2. Partial Dependency Plots for Ag + Urb (A), MnAnnPre-
cip (B), Rip_Forest (C), and Rip_Max-Elev (D) in the Boosted
Regression Model Developed for RICHTOL in Willamette Valley
(Will_V). The y-axis fitted function represents the effect of the
selected variable on the response variable RICHTOL; the relative
contribution of each explanatory variable is reported in parenthe-
ses. Refer to Table 1 for variable definitions.
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increase and a plateau above approximately 30%
riparian forest cover.

DISCUSSION

It is encouraging that the MLR and the CART
and RF (regression tree family) modeling techniques
gave similar results selecting in general the same
main explanatory variables (Table 2) and explaining
similar amounts of variation (Table 3), which may
indicate that the MLR methods used in this study
are appropriate for these types of ecological data.
The BRT models, however, did show notable
improvement in model fit with increases in R2 val-
ues ranging from 0.09 through 0.15 for RICHTOL to
0.11 through 0.20 for O ⁄ E compared to MLR models
(Table 3). L. R. Brown, J. T. May, A. C. Rehn, P. R.
Ode, I. R. Waite, and J. K. Kennen (personal com-
munication), using a MMI for macroinvertebrates
(i.e., BIBI) sampled across a strong urbanization
gradient, also showed a notable improvement in
model performance for BRT compared to MLR.
De’ath and Fabricius (2000) suggest that for complex
or messy data, even single regression trees will often
outperform MLR and are preferred for determining
variable selection and interaction effects due to the
issue that MLR models with complex data are fre-
quently difficult to interpret because they will often
include too many variables with high order interac-
tions. It was found that CART and RF models did
not outperform the RICHTOL MLR models in this
analysis which supports our overarching hypothesis
that MLR will generally perform as well as many of
the tree modeling techniques when data follows a
general linear response or when, in the case of the
three regions evaluated, there are few explanatory
variables with no high order interactions. Maloney
et al. (2009) found that CART models of land-use
disturbance on macroinvertebrate IBI metrics pro-
vided results that were intuitive, but they did not
classify sites any better than logistic regression mod-
els; however, unlike in this study, their RF models
showed minor improvements in performance over
CART and logistic regression models.

In general, regression trees allow the inclusion of
more variables in the model building phase than
MLR, allow for easier testing for interaction affects
and produce a list of variables explaining the impor-
tance of variation in the response variable. In addi-
tion, the PDPs from BRT or RF can offer valuable
insights into the pattern or form of the response vari-
able based on select explanatory variables improving
model interpretation. For example, the PDPs for

Will_V (Figures 2 and 3) revealed that the response
rate changed or flattened out and provided additional
insight into potential thresholds along the range of
the individual explanatory variables that are not eas-
ily depicted with MLR models.

The identification of thresholds (i.e., transition
points in ecological condition) is of growing interest
to the scientific and regulatory community, espe-
cially for forecasting the loss of biodiversity (Hilder-
brand et al., 2010) or for understanding system
recovery (Clements et al., 2010; Qian and Cuffney,
2012). More research is clearly needed to help better
detect nonlinear and possible threshold responses
(Dodds et al., 2010) and new analytical tools are
emerging (i.e., BRT results shown in this study) that
can assist with identifying changes in taxa occur-
rence across an environmental gradient (Qian and
Cuffney, 2012).

Even though we were able to successfully develop
strong MLR models indicating that the primary
responses were linear in nature (Waite et al., 2010),
the BRT PDPs reveal potential thresholds in the
response variable in at least some of the regions
(e.g., the Will_V PDPs shown for RICHTOL and
O ⁄ E in Figures 2 and 3) that were not seen in the
MLR models. It is possible that since MLR models
assume linearity that they may sometimes miss non-
linear ⁄ thresholds in some explanatory variables. The
response of RICHTOL and O ⁄ E for watershed agri-
culture plus urban (Ag + Urb) was primarily linear
with a small step function at the end (Figures 2A
and 3A). The two riparian variables, riparian maxi-
mum elevation (Rip_Max-Elev; Figures 2D and 3B)
and riparian forest (Rip_Forest; Figures 2C and 3D)
on the other hand showed potential thresholds. The
response of the two invertebrate metrics to changes
in Rip_Max-Elev showed no response from 600 to
400 m for RICHTOL and to 200 m for O ⁄ E, after
which there was a steep increase or decrease to the
lowest elevation (Figures 2D and 3B). It is likely
that riparian elevation is acting as a surrogate for
the natural climatic and geologic trend that occurs
in the Willamette Valley, trending from the valley
floor with low stream gradient and lower elevation
and precipitation to higher values for these and
other variables as one moves toward the foothills of
the Coast or Cascade Ranges on either side of the
valley. The response of RICHTOL and O ⁄ E to
changes in Rip_Forest showed a slow but continuous
linear increase or decrease as the amount of
Rip_Forest decreased from 100% to approximately
5%, after which there appears to be a rapid change
in either of the metric values, which may indicate a
strong threshold at or near the 5% level. This sug-
gests that as percent forest in the riparian zone
along streams drops below approximately 5-10%
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land cover, stream integrity degrades rapidly possi-
ble due to the reduction in natural buffering capac-
ity seen in healthy riparian systems. L. R. Brown, J.
T. May, A. C. Rehn, P. R. Ode, I. R. Waite, and J.
K. Kennen (personal communication) found a similar
response in the MMI they modeled (BIBI) against
four explanatory variables across a strong urbaniza-
tion gradient in some California streams. They
showed that the amount of agriculture plus urban
land use in the riparian zone and mean annual pre-
cipitation in the watershed showed approximate lin-
ear responses, though in opposite directions. They
also found a threshold-type response in the BIBI to
low values of population density (approximately
300 persons ⁄ km2) in the watershed. Similar to the
findings in this study, L. R. Brown, J. T. May, A. C.
Rehn, P. R. Ode, I. R. Waite, and J. K. Kennen (per-
sonal communication) found that the BRT method
appeared to be more sensitive for detecting nonlin-
ear response patterns such as thresholds, for deter-
mining potential surrogate variables, and for model
corroboration.

The overall poorer performance of the O ⁄ E metric
compared to the single metric RICHTOL across all
models was notable, yet the especially poor perfor-
mance in the Blue_Mt region was particularly sur-
prising (Table 3). When comparing the ability of O ⁄ E
and a multimetric invertebrate IBI to differentiate
between reference and degraded sites, Herbst and
Silldorff (2006) found that the two methods were in
close agreement for sites in eastern Sierra Nevada of
California. Hawkins et al. (2010) compared the per-
formance of a multimetric index and O ⁄ E for 225
sites from five ecoregions in the interior Columbia
Basin, including many of the sites used in this study
from the Blue_Mt ecoregions. They found that the
O ⁄ E metric was better at distinguishing among
the three disturbance classes, particularly between
the intermediate and high disturbance classes than
the multimetric index. The discrepancy between the
poor performance of O ⁄ E in the Blue_Mt region in
our study and the strong performance in their study
may be due to a larger underlying disturbance gradi-
ent within their dataset, which resulted from the
inclusion of data from multiple ecoregions. Models
derived for the Will_V region, where there was a lar-
ger disturbance gradient than that found in the
Blue_Mt region, showed relatively little difference in
performance between the O ⁄ E and RICHTOL metrics.
It is also possible that the lower R2 for the O ⁄ E mod-
els may be because we are not able to model nor
account for the error associated with estimation of
the raw O ⁄ E metric values. Chessman et al. (2010)
found that O ⁄ E values did not distinguish among site
disturbance groups based on hydrologic alteration in
Australia even though taxonomic richness and assem-

blage composition could. However, it is yet unclear
why O ⁄ E performance would be inhibited in areas
with a shorter disturbance gradient than that shown
in Hawkins et al. (2010). One possibility is that
because these O ⁄ E models are based on a subset of
taxa that occur at 50% of the reference sites and
therefore operate with a reduced taxa list, specifically
with the relatively rare and arguably with the more
sensitive portion of the taxa list removed, the result-
ing O ⁄ E values may be less able to distinguish the
small more subtle differences among sites, such as
that seen in the Blue_Mt study region. In contrast,
the RICHTOL metric uses all the taxa that occur at a
site and may be a more sensitive measure of changes
in assemblage integrity in areas of low anthropogenic
disturbance.

CONCLUSIONS

Waite et al. (2010) were able to successfully
develop MLR models for the three distinct and sepa-
rate regional datasets presented in this study for
individual macroinvertebrate metrics (e.g., RICH-
TOL, EPT). This study developed alternate models,
CART, RF, BRT, for the same datasets and compared
them to the MLR models previously developed. The
O ⁄ E metric performed nearly as well as RICHTOL in
the Will_V region where there was a strong distur-
bance gradient but performed poorly in Blue_Mt, a
region with a relatively weak gradient. Though the
data modeled in this study were not particularly
noisy or complex, the BRT models, in all cases, out-
performed the MLR methods and provided specific
information on the form of the response function for
each variable giving important insight into potential
thresholds in the data. As a result of this ecological
modeling comparison, BRT models may indeed repre-
sent a good alternative to MLR for modeling species
distribution relative to environmental variables. Mod-
eling results indicate that even when the response
pattern is simple and strongly linear, BRT models
not only markedly improve model fit, but can also
help to corroborate results from other methods, pro-
vide additional information on potential interactions
among variables, and support greater insight into
understanding the response profile of a given metric,
whether it be a linear, step, or a threshold function,
across environmental gradients that may not be eas-
ily seen with MLR. Models like these can be used to
better understand potential causal linkages between
environmental drivers and stream biological attri-
butes or condition and predict expected values of
macroinvertebrate metrics at unsampled sites.
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